>

Scalable and Robust DDoS

Detection via Universal Monitoring

Vyas Sekar

Joint work with:

Alan Liu, Vladimir Braverman JHU

Hun Namkung, Antonis Manousis, CMU

Carnegie Mellon JOHNS HOPKINS

UNIVERSITY

DDoS attacks are getting worse G opennFe

Increasing in number

Increasing in power
Increasing in diversity

FBI WARNS OF INCREASE IN DDOS EXTORTION SCAMS
=

DDoS Attacks Cost $40,000 Per Hour

Incapsula, 11/12/2014

Threatpost, 7/31/2015

China Appears to Attack GitHub by Diverting Web Traffic

DDoS attacks a year.

The New York Times,

Half of companies experience more than five 3/30/2015

Neustar, 2014

Internet

The DDoS That Almost Broke the

Wave of 100Gbps 'mega' DDoS attacks hits

Cloudflare, 3/27/2013

record level in 2014

Techworld, 7/16/2014

Era

NTP ATTACKS: Welcome to The Hockey Stick| SYN Flood Attack
sunami ood Attac

2017 Open-NFP Arbor Networks, 2/14/2014 Radware, 10/7/2014 2

Many attacks, many algorithms!

@ svyN Flood @ upor Flood

‘ NTP Flood ‘ DNS Amplification

 Who's sending a lot more traffic than 10min ago?
* Who's sending a lot to 10.0.1.0/16?
* |sthere asymmetry in packet counts in directions?

©2017 Open-NFP

Classical Netflow-style packet sampling G oeennee

Sample packets at random, group into flows

Flow = Packets with same pattern Flowld| Counter
Source and Destination Address and Flow reports
Ports (v
=
S @
[1[1]6]1]3[1]1] ATiTelA13[1]7]

Estimate: FSD, Entropy, Heavy Hitters ...

Prior work: Not good for fine-grained analysis!

©2017 Open-NFP 4

Alternative: App-specific sketches G opennFe

Heavy Hitter Entropy Superspreade
Application-Level Application-Level Application-Level
Metric Metric] Metric

g ki -l

F) F))
I Counter I I Counter I I Counter I
Data Data Data
I Structure I I Structure I I Structure I
s
I 11— 1 1—a 1
Packet Packet Packet
™ PpProcessing ™ ™ Processing ™ ™ Processing ™

Pre-deployed
Algorithms
Traffic

Higher Complexity with more applications
Higher development time as new applications appear
Tight Binding between monitoring data and control plane

©2017 Open-NFP 5

Driving question for our work

Today

Generality

Late Binding

e.g., NetFlow

e.g., Sketches

P
5

©2017 Open-NFP :

Many open questions..

Does such a construction exist?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

Is it feasible to implement?

©2017 Open-NFP

Roadmap for this talk -

mm) | Does such a construction exist?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

s it feasible to implement?

©2017 Open-NFP 8

Concept of Universal Streaming G opennFp

« Basic Streaming Algorithms:

(A stream of length m with n unique items)
[1]1]5]1]3]3]1]2]4]6]5] ------

frequency vector <f,.f,... f,> U One algorithm solves one problem

.@’ G-sum = }'i=1Tnig(fIr)

F, : AMS Sketch, Count Sketch

Universality:

. . o
Universal Streaming* arbitrary g() function?

[1[1]5]1]3[3[1]2]4[6[5] ------

frequency vector <f,f,... f,>

©2017 Open-NFP 9

Theory of Universal Streaming G opennFp

Thm 1:
There exists a universal approach to estimate G-sum
when g() function is non-decreasing such that g(0)=0, and
g(fli) doesn’t grow monotonically faster than f4/2 .

Thm 2:
A universal sketch construction can be used to estimate G-
sum with high probability using polylogmithric memory.

©2017 Open-NFP 10

Intuition behind Universality @ opennEe

Informal Definition: ltem /is a g-heavy hitter if changing
its frequency £/ significantly affects its G-sum.

Case 1: there is one sufficiently large a g-heavy hitter

Most of mass is concentrated in this heavy hitter.
Use L2 Heavy Hitter algorithm to find such a heavy hitter.

Case 2: there is NOT single sufficiantly large a g-heavy hitter

Find heavy hitters on a series of sampled substreams of
increasingly smaller size.

©2017 Open-NFP

11

Universal Sketching Algorithm

Estimated
G-sum

Heavy Hitter Alg Wi REWIRERINCR)

Generate log(n) substreams
by zero-one hash funcs

Count-Sketch etc.
H1...Hogn)

1 lalals[a] [al2]

Heavy Hitter Alg |:> (1,4), (5,2),(2,1)

5] 2]

Heavy Hitter Alg IS S PRt
Heavy Hitter Alg :> (2,1)

Level In Parallel L2 Heavy Hitter(HH) Alg Heavy Hitters and Counters

©2017 Open-NFP S

log(n) (2]

12

722z 7777

Universal Monitoring Realization G’ opennFp

App 1 | cecene App n |
\ /
Application-specific Computation Top-K |

Sampling G
ash fune) | Undate Counters”
i Sketching

Registers

Sampling Sketching

©2017 Open-NFP 13

Roadmap for this talk -

Does such a construction exist?

ﬁ Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

s it feasible to implement?

©2017 Open-NFP 14

Network-Wide Problem G opennFe

One sketch for each dim

N

N nodes o1 DI |
D dimensions I ﬁ
(e.g., src, srcdst) | A B >z I
-

02 D2

-—_—_-—_-—_J

-
Trivial sol: place D*N sketches

Our goal: Place s sketches, where s<<D*N
One-big-switch abstraction

©2017 Open-NFP 15

Roadmap for this talk -

Does such a construction exist?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

) | |s it competitive w.r.t. custom algorithms?

s it feasible to implement?

©2017 Open-NFP 16

Evaluation Setup

Traces: CAIDA backbone traces
 Split into different “epoch” durations

Memory setup: 600KB—5MB

Application metrics: HH, Change, DDoS

Custom algorithms from OpenSketch

©2017 Open-NFP

17

UnivMon is Competitive

Key Takeaways:

+ Stable cross
traces

*¢ Error gap < 3.6%

* Good accuracy

with limited memory

10

Heavy Hitter ———

‘ ‘ ‘ UnivMon
e ! (Total 600KB)
2

0.01

Error Rate (%)
(@)]

OC792 PC792 00792 20792 30792 » C792 5

Heavy Hitter ———
Change Detection
DDoS mmmmm

N

Error Rate (%)

W] iy | OpenSketch
7 + | % 1 } 5 T + % (600KB/task)

0.01
OC792~ 7 OC792~200792~300792~4 OC792~5

©2017 Open-NFP

18

UnivMon is Better as Portfolio Grows! G oeennee

—i
o

Heavy Hitter
DDoS mmmmm
Change Detection

X 5

(©N

m -

§1t- - + -1

5]

55

10 ' ' '

A'O:OSe 1 A'OpSe o AppSe 13
{HH} {HH,DDOS} {HH,DDOS,Change}

©2017 Open-NFP .

Roadmap for this talk -

Does such a construction exist?

Does it extend to a network-wide setting?
e.g., Multiple paths, Multiple dimensions

Is it competitive w.r.t. custom algorithms?

W) |Is it feasible to implement?

©2017 Open-NFP 20

Mapping Data Plane to P4

Custom Libraries

App-Estimation

— m mn gl Top-K

P4 Hash Funcs P4 Registers Hash Funcs
+

P4 Registers

©2017 Open-NFP i

Design choices for realization " OpenNEP
App-Estimation

_____ - - -
sampling [l sketching lugll TopK

‘ _ . Hard in
HW Complexity (need Priority Queue) hardware

.Storage/Comm Overhead (report Top-K to controller)

App-Estimation

I
P — E —

Several MBs
more
' Storage/Comm Overhead (report entire sketch/keys)

©2017 Open-NFP 2 2 22

HW Complexity

Implementation in Netronome: Step 1

Initial attempt: We tried with UnivMon P4 Code

Found out limitation of P4
= No Loop statement — out of space in Netronome

= Lack of Expressiveness, want to store seed values for hash. Store
this at low level memory.

©2017 Open-NFP 23

Implementation in Netronome: Step 2

So we switched to Micro-c capabilities

Some difficulties in porting/understanding APIs figuring out
performance bottlenecks

We used the simulator to profile the bottleneck

Found out hash computation is the problem!

©2017 Open-NFP 24

Optimizing hash operation

G227 7zzzzz22222 7777272

G" OpenNFP

 Shift operation instead of modular operation
* a,b:64 bit random integer, x : 32bit key
* Ha,b(x)=((ax+b) % p) % m

e Hahix\=(lax+h)>>32)& n

5 - -
o modular hash e
23 shift hash mess

4 b d

o
a3
=
[=)]
32
b=
- 1

0

40
35
30
25
20
15
10

1 2 3 4 5 6
of UnivMan Sketches

©2017 Open-NFP

25

Takeaway from basic improvements G osennre

 Shift operation is much faster than modular operation in
Netronome

* UnivMon can exploit parellelism with Netronome. Atomic engine
did a great job to solve synchronization issues with sketch counters

* Limitation : Shift operation can’t guarantee enough randomness of
hash functions and fair accuracy of sketching

©2017 Open-NFP 26

ldeas: Use Tabular Hash

* Memory read is faster than modular operation and it has higher independence

32bit 64bit
Name Two Indep CW trick 32 Char Table 32 Short Table 32 CW trick 64 Char Table 64 Short Table 64
Independent 2-independent 5-independent 5-independent 5-independent 5-independent 5-independent 5-independent
Key Idea (ax+b) % p % m multiplication & shift tabulation tabulation multiplication & shift tabulation tabulation
Memory 0 20KB 384KB 12MB 100MB
Instructions 53 (8 multiplication) 37 12 243 85 37
memory lookup 7 3 15 7
Memory Needed for Netronome (X 27) 540KB 10MB 204MB 2.7GB
Implemented I (0] (0] (0] (0] (0] X X

2.7GB runs out of memory
204MB is possible to implement

Now all of tables are in the DRAM of NIC

©2017 Open-NFP

27

Tabular hash results - Kpps

Netronome Performance - Kpps with min packet size (64)

10000 B Dimension 1
B Dimension 2

B Dimension 3
7500

5000

o |

2500

Twolndep32 CWtrick32 CharTable32 ShortTable32 CWtrické4

Baseline(forwarding)
max pps : 17300K pps

Line Rate with max packet
size (1500) : 3245

28

Tabular hash throughput results G’ opennFP

e Char Table 32 -> can cover

Netronome Performance - Gbps with max packet size (1500) 2 dimension with line rates

40 Bl Dimension 1
B Dimension 2
B Dimension 3

30 e 64bit is slower

20

10

Twolndep32 CWtrick32 CharTable32 ShortTable32 CWtrick64

©2017 Open-NFP 29

Some lessons and takeaways

Simulator helped!

We could profile the bottleneck of our implementation
with built-in simulator of IDE

UnivMon is feasible on NFP at line-rate
with 3 dimensions and 5-independent hash function

C programming with Netronome has greater flexibility!

©2017 Open-NFP 30

Ongoing and Next Steps

APls to write applications and queries on UnivMon
Suite of DDoS detection applications

Continue profiling and benchmarking
Other platforms as well (e.g., openvswitch, fd.io)

©2017 Open-NFP 31

Conclusions

« DDoS Detection needs more flexibility and
programmability

« Today: General XOR Flexible
Vision: General + Flexible via Universal Monitoring

 |nitial promise: Feasible, accurate, possible to implement

« Ongoing and future work:
Performance profiling, “Northbound” APls etc.

©2017 Open-NFP

32

